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ABSTRACT

Antibodies are a paradigm for high-affinity, protein-based
binding reagents and are extremely important in

biotec
specia

nnological, diagnostic, and therapeutic applications. Of
interest are nanobodies, recombinant variable domains

from

neavy-chain-only antibodies. Nanobodies have several

advantages: their small molecular weight, superior solubility and
stability and clearance rate. One particular use of nanobodies is
their use in imaging, which requires tailoring affinity and
specificity for their targets. Despite their benefits, nanobodies
have only recently been used in single-molecule assays, e.g.

PAINT

imaging, which require careful tuning of their kinetic

properties.

In this work we demonstrate the detection of nanobody-
antigen binding at the single-molecule level. We first
demonstrate the measurement of interaction kinetics between an
immobilised GFP target and a LaG-16 antibody in solution, with

similar

results to bulk-derived kinetics constant. We then

demonstrate the same kind of experiments in a more complex
situation with multiple nanobodies.
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INTRODUCTION

Next-generation protein sequencing™ is a transformational tool for protein
science which enables new proteomic discoveries in human health and disease, such
as biomarker detection and characterization with single-molecule resolution.

Quantum-Si has developed the world's first next-generation protein sequencer™.
The workflow involves immobilization of peptides in individual apertures of a zero- Platinum™
mode waveguide (ZMW) array on an integrated semiconductor chipl!l. Fluorescently
labelled N-terminal amino acid (NAA) recognizers bind on-off to NAAs and
aminopeptidases sequentially cleave and expose each NAA for recognition. The
ifetime and intensity and order of binding events result in a kinetic signature that is
used to determine the peptide sequence.

We demonstrate the use of this technology to study nanobody kinetics with single-

molecule resolution.
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PRELIMINARY RESULTS

1) Target preparation : 4 ) Data analysis : Heatmap plotting and filtering 5) Data analysis : Distribution of pulse durations
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3) Loading of the chip :

1] Brian D. Reed et al. Science, 2022, 378 (6166) 186-192.
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3] Peter C Fridy et al. Nat Methods 11, 1253-11260 (2014).

5o dye complex allows for the validation
Dy:_ of the correct labelling of the VHHs. §
complex Here VHH2 is not labelled while the £
alone others are.

GFP complex!?

The distributions of the pulse durations for the experiments with LaG-16 in solution
interacting with GFP on the chip can be fitted with 3 exponentials functions, showing the

presence of 3 distinct biological events.
The kinetics of GFP/LaG-16 are linked to the third constant because the NTC experiment
only contains 2-exponential fits, which are also observable in the GFP/LaG-16 experiments.

From the literature: K g for the GFP/LaG-16is 1,1.1073 s~ 1 [3].
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NTC Heatmap 2: Pulse duration vs. Bin ratio Thanks to this proof-of-concept, we measured the kinetics of the interaction
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